Sympathoexcitation in ANG II-salt hypertension involves reduced SK channel function in the hypothalamic paraventricular nucleus.

نویسندگان

  • Robert A Larson
  • Le Gui
  • Michael J Huber
  • Andrew D Chapp
  • Jianhua Zhu
  • Lila P LaGrange
  • Zhiying Shan
  • Qing-Hui Chen
چکیده

Hypertension (HTN) resulting from subcutaneous infusion of ANG II and dietary high salt (HS) intake involves sympathoexcitation. Recently, we reported reduced small-conductance Ca(2+)-activated K(+) (SK) current and increased excitability of presympathetic neurons in the paraventricular nucleus (PVN) in ANG II-salt HTN. Here, we hypothesized that ANG II-salt HTN would be accompanied by altered PVN SK channel activity, which may contribute to sympathoexcitation in vivo. In anesthetized rats with normal salt (NS) intake, bilateral PVN microinjection of apamin (12.5 pmol/50 nl each), the SK channel blocker, remarkably elevated splanchnic sympathetic nerve activity (SSNA), renal sympathetic nerve activity (RSNA), and mean arterial pressure (MAP). In contrast, rats with ANG II-salt HTN demonstrated significantly attenuated SSNA, RSNA, and MAP (P < 0.05) responses to PVN-injected apamin compared with NS control rats. Next, we sought to examine the individual contributions of HS and subcutaneous infusion of ANG II on PVN SK channel function. SSNA, RSNA, and MAP responses to PVN-injected apamin in rats with HS alone were significantly attenuated compared with NS-fed rats. In contrast, sympathetic nerve activity responses to PVN-injected apamin in ANG II-treated rats were slightly attenuated with SSNA, demonstrating no statistical difference compared with NS-fed rats, whereas MAP responses to PVN-injected apamin were similar to NS-fed rats. Finally, Western blot analysis showed no statistical difference in SK1-SK3 expression in the PVN between NS and ANG II-salt HTN. We conclude that reduced SK channel function in the PVN is involved in the sympathoexcitation associated with ANG II-salt HTN. Dietary HS may play a dominant role in reducing SK channel function, thus contributing to sympathoexcitation in ANG II-salt HTN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-Term High Salt Intake Involves Reduced SK Currents and Increased Excitability of PVN Neurons with Projections to the Rostral Ventrolateral Medulla in Rats

Evidence indicates that high salt (HS) intake activates presympathetic paraventricular nucleus (PVN) neurons, which contributes to sympathoexcitation of salt-sensitive hypertension. The present study determined whether 5 weeks of HS (2% NaCl) intake alters the small conductance Ca2+-activated potassium channel (SK) current in presympathetic PVN neurons and whether this change affects the neuron...

متن کامل

CALL FOR PAPERS Central Control of Fluid and Electrolyte Homeostasis Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus

Ribeiro N, Panizza HN, Santos KM, Ferreira-Neto HC, Antunes VR. Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 309: R1369–R1379, 2015. First published September 9, 2015; doi:10.1152/ajpregu.00312.2015.—A high-salt diet can lead to hydromineral imbalance and increases in plasm...

متن کامل

Gαi2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension.

Excess dietary salt intake is an established cause of hypertension. At present, our understanding of the neuropathophysiology of salt-sensitive hypertension is limited by a lack of identification of the central nervous system mechanisms that modulate sympathetic outflow and blood pressure in response to dietary salt intake. We hypothesized that impairment of brain Gαi2-protein-gated signal tran...

متن کامل

Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats.

The present study addresses the hypothesis that angiotensin type 1 receptors (AT1Rs) in the rostral ventrolateral medulla (RVLM) contribute to the elevation of mean arterial pressure (MAP) in Dahl salt-sensitive (DS) rats fed a diet with a high NaCl content. Groups of DS or Dahl salt-resistant (DR) rats were fed diets containing either 0.3% NaCl (LNa) or 8% NaCl (HNa) for 3 weeks. Rats were ane...

متن کامل

Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus.

A high-salt diet can lead to hydromineral imbalance and increases in plasma sodium and osmolality. It is recognized as one of the major contributing factors for cardiovascular diseases such as hypertension. The paraventricular nucleus (PVN) plays a pivotal role in osmotically driven sympathoexcitation and high blood pressure, the precise mechanisms of which are not fully understood. Recent evid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 308 12  شماره 

صفحات  -

تاریخ انتشار 2015